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Abstract

In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous in-

clusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors re-

lated to Eshelby�s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal

inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches.

Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the

obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative

procedure in the context of self-consistent scheme. Generalised Mori–Tanaka�s model and dilute approach are re-

formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented

and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for

various types of piezoelectric inclusions and for various orientations and compared to existing experimental and the-

oretical ones.
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1. Introduction

Piezoelectric materials have the property of converting mechanical energy into electrical energy (direct

piezoelectric effect) and vice versa (inverse piezoelectric effect). This electromechanical coupling behavior
makes piezoelectric ceramics such as lead zirconium titanate (PZT) very attractive materials towards

sensors, actuators and resonators applications. Some monolithic piezoelectric materials have, however,

several drawbacks, namely in hydrostatic transducer applications. The low value of hydrostatic strain

International Journal of Solids and Structures 40 (2003) 361–384

www.elsevier.com/locate/ijsolstr

* Corresponding author. Fax: +212-39-39-39-53.

E-mail address: azrar@hotmail.com (L. Azrar).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00524-3

mail to: azrar@hotmail.com


coefficient limits their applicability. Hence, composite materials such as piezoelectric ceramic fibers em-

bedded in a soft non-piezoelectric matrix are often a better technological solution for a lot of applications

such as underwater and medical ultrasonic imaging (Challende, 1990) and transducers for underwater and

sonar projector applications. They have superior electromechanical coupling characteristics (better acoustic
impedance matching with water and (or) tissue) to conventional piezoelectric ceramic (Smith, 1989). Pi-

ezocomposites may provide material properties largely superior to conventional piezoelectric materials. For

some years, materials science and engineering have been exploiting fibers to reinforce material. There is

therefore a need for models that predict the electroelastic properties of such composites.

Several attempts to predict the effects of material properties and the micro-structural geometry of the

constituents on the effective electroelastic behavior of composites were proposed. Firstly, Newnham et al.

(1978) used a theory based on the idealized parallel and series connections of the constituents based on their

three-dimensional connectivity characteristics for the analysis of the effective electroelastic moduli of pi-
ezoelectric composites. These analyses were extended by Banno (1983) to consider the effects of a dis-

continuous reinforcement through a ‘‘cubes’’ approach. Analytical predictions, primarily limited to

unidirectional continuous fibers reinforced composite where one-dimensional analysis leads to adequate

results, have been proposed by Smith and Auld (1991). However, in each of these approaches, simplifying

assumptions have been made which led to the application of Voigt or Reuss type estimates (Chan and

Unsworth, 1989). In more rigorous attempt to account for the interactions among continuous fibers at

finite concentrations, Grekov et al. (1989) developed an extension of the well-known concentric cylinder

models of elastic and electric behaviors, to coupled electroelastic behaviors in order to predict the effective
electroelastic moduli of continuous fibers reinforced composites.

The analysis of piezoelectric composites with discontinuous reinforcement has received limited attention

(Furukawa et al., 1976). An approach was proposed by Wang and Liu (1990) and Wang (1992) in which the

coupled electroelastic field in piezoelectric ellipsoidal inhomogeneity embedded in an infinite matrix was

developed. The obtained solution is expressed in terms of Fourier�s transforms of electroelastic Green�s
functions. Explicit expressions for the effective electroelastic moduli of continuous fiber reinforced com-

posites were derived by Wang (1992). However, this solution ignores the interaction among fibers that exist

at finite concentrations and thus is valid only at dilute limit. The Wang�s (1992) electroelastic fields are
equivalent to those obtained by Deeg (1980) through a generalization of Eshelby�s equivalent inclusion

approach (Eshelby, 1957). The coupled electroelastic fields for the single ellipsoidal inclusion problem was

obtained by Benveniste (1992) without giving any estimation of average fields. Based on the contour in-

tegral representation of Green�s function derived by Deeg (1980); Dunn and Taya (1993b) made a signif-

icant contribution to the analysis of effective behavior of piezoelectric composites. Explicit expressions for a

set of four tensors corresponding to Eshelby�s elastic tensors are presented for ellipsoidal inclusions. They

generalized several micro-mechanical models such as Mori and Tanaka�s effective medium theory (Mori

and Tanaka, 1973), dilute concentration approach, the differential scheme and self-consistent model. Es-
timations of the average electroelastic fields that exist at finite concentrations and predictions of the elastic,

dielectric and piezoelectric moduli of two-phase composite materials reinforced by ellipsoidal particles or

fibers are presented (Dunn and Taya, 1993b). Particular attention has been given by several authors to the

Mori–Tanaka�s method (Dunn and Taya, 1993a; Wang, 1994; Chen, 1994). Explicit closed-form expres-

sions for the four analogous at Eshelby�s tensors for spheroid inclusions in transversely isotropic piezo-

electric medium are presented by Dunn and Wienecke (1997). More recently, the piezoelectric Eshelby�s
tensors for spheroidal inclusions are obtained explicitly by Mikata (2001). Huang and Kuo (1996) use the

Mori–Tanaka�s method to predict analytical expressions of effective electroelastic properties of composites
in term of phase properties, orientation angles, volume fraction and inhomogeneity shape based on nu-

merical computations of the four equivalent Eshelby�s tensors. The finite element method to predict elec-

troelastic constants in piezocomposites was used by several authors, namely, Poizat and Sester (1999) and

Gaudenzi (1997).
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In this work, an extension of the Eshelby�s heterogeneous inclusion problem to electroelastic case is

formulated by introducing four interaction tensors (Fakri and Azrar, 2001). An analytical formulation of

interaction tensors is introduced and clearly presented for ellipsoidal inclusions. These tensors are basically

used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are
based on numerical computations of these tensors for various types of inclusions. Based on Fourier�s
transform and Gauss integration the resulting interaction tensors are numerically computed. Using the

obtained results, average stress–electric displacement fields and effective electroelastic moduli of piezo-

electric multiphase composites are investigated by an iterative procedure in the context of self-consistent

scheme. The main assumption in this approach is that each inclusion is embedded in the effective medium of

as yet unknown moduli. On the other hand, generalized Mori–Tanaka�s model and dilute approach are

reexamined using the four interaction tensors mentioned above to obtain effective electroelastic moduli of

piezoelectric composites. The three models are deeply analyzed for various effective moduli and various
types of piezoelectric inclusions. Numerical results of effective electroelastic coefficients are presented and

compared to existing experimental and theoretical results.

2. Mathematical formulation

Let us consider a homogeneous piezoelectric material. In the stationary theory of linear piezoelectricity,
the coupled interaction between the electrical and mechanical variables is expressed by the following re-

lations:

rij ¼ Cijmnemn � enij � En ð1Þ

Di ¼ eimnemn þ jin � En ð2Þ

Elastic strain, emn, and electric field, En, are independent variables and related to stress, rij, and electric

displacement, Di (see Ikeda (1990)). Cijmn, enij and jin are the elastic moduli (measured in a constant electric

field), the piezoelectric coefficients (measured at a constant strain or electric field) and the dielectric con-

stants (measured at a constant strain) respectively. The strain and electric field are derivable from the elastic

displacement vector u and electric potential U by the compatibility equation as

emn ¼
1

2
ðum;n þ un;mÞ ð3Þ

En ¼ �U;n ð4Þ

The stress and electric displacement fields should verify the equations of equilibrium, which in the absence

of body forces and free charge are as follows:

rij;i ¼ 0 ð5Þ

Di;i ¼ 0 ð6Þ

The coupling between mechanic and electric variables is provided by the piezoelectric constants enij. Eqs.

(1)–(6) constitute a set of 22 equations for the following 22 unknowns rij; emn, ui, Di, Ei and U.

In order to make easy the manipulation of these equations, the notation introduced by Barnett and

Lothe (1975) is used. This notation is identical to the conventional subscripts notations with the excep-

tion that lower case subscripts take on the range 1–3, while capital subscripts take on the range 1–4
and repeated capital subscripts are summed over 1–4. With this notation, the elastic-strain-electric field ZMn

is expressed as
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ZMn ¼
emn M ¼ 1; 2; 3
�En M ¼ 4

�
ð7Þ

ZMn is derivable from elastic displacement–electric potential field UM given by

UM ¼ um M ¼ 1; 2; 3
U M ¼ 4

�
ð8Þ

Similarly, the stress–electric displacement RiJ is represented by

RiJ ¼ rij J ¼ 1; 2; 3
Di J ¼ 4

�
ð9Þ

The electroelastic moduli can then be represented as follows:

EiJMn ¼

Cijmn J ¼ 1; 2; 3; M ¼ 1; 2; 3
enij J ¼ 1; 2; 3; M ¼ 4

eimn J ¼ 4; M ¼ 1; 2; 3
�jin J ¼ 4; M ¼ 4

8>><>>: ð10Þ

The symmetry properties of EiJMn derive from those of Cijmn, enij and jin. With these shorthand notations, (1)

and (2) can be unified into a single shorthand equation

RiJ ¼ EiJMnZMn ð11Þ
This equation is reduced to the well-known Hooke�s law in elastic case.

Let us recall that ZMn, UM , RiJ and EiJMn are not tensors. It is often convenient to use the matrix notations.

These parameters can then be written in the following form:

EiJMn ¼
Cijmn et

nij

eimn �jin

� �
ZMn ¼

emn

�En

� �
RiJ ¼ rij

Di

� �
ð12Þ

C, e and j are elastic, piezoelectric and dielectric coefficients respectively. Then the electroelastic coefficients

can be represented by the ð9� 9Þmatrix E. Similarly, Z and R are represented by the ð9� 1Þmatrices. Thus,

to write the equations, each individual tensor must be transformed by the well known laws of tensor

transformations. The resulting tensors can then be reunified into the form of (7) to (10). Substituting Eqs.

(3) and (4) into Eqs. (1) and (2) and considering the symmetries, one can get

RiJ ¼ EiJMnUM ;n ð13Þ
Introducing this equation in shorthand notations of Eqs. (5) and (6), the following partial derivative

equations is obtained:

ðEiJMnUM ;nÞ; i ¼ 0 ð14Þ

3. Generalized integral equation

In this section, the expression of the local strain field based on integral equations proposed by Dederish

and Zeller (1973) for elastic case is extended, to electroelastic case. The resulting local strain and electric

fields are expressed with generalized integral equations. An infinite media with a linear electroelastic be-
havior is considered. Introducing a homogeneous fictive media called ‘‘reference media’’, with electroelastic

moduli E0, the local electroelastic moduli can then be written as

EiJMnðrÞ ¼ E0
iJMn þ dEiJMnðrÞ ð15Þ
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in which �r� is the position vector in the considered media and dEðrÞ is the deviation. The introduction of

Eq. (15) into the equilibrium Eq. (14) leads to

E0
iJMnUM ;niðrÞ þ ðdEiJMnðrÞUM ;nðrÞÞ; i ¼ 0 ð16Þ

Let us introduce the electroelastic Green�s functions denoted by GMJ ðr � r0Þ of the ‘‘reference media’’ as

defined by Deeg (1980) relate response at the position r due to a unit point force or charge at r0 (see

Appendix B). These tensors must satisfy the following differential equations (Dunn, 1994):

E0
iJMnGMK;inðr � r0Þ þ dJKdðr � r0Þ ¼ 0 ð17aÞ

where dðr � r0Þ is the three-dimensional Dirac delta function and dJK is the generalized Kr€oonecker delta.

These equations can be expressed explicitly as

C0
ijmnGmk;in þ e0tnijG4k;in þ djkdðr � r0Þ ¼ 0 ð17bÞ

e0imnGm4;in � j0
inG44;in þ dðr � r0Þ ¼ 0 ð17cÞ

e0imnGmk;in � j0
inG4k;in ¼ 0 ð17dÞ

C0
ijmnGm4;in þ e0tnijG44;in ¼ 0 ð17eÞ

On the other hand, the elastic displacement and electric potential, represented by UM , are formulated

as

UKðrÞ ¼
Z

V
UMðr0ÞdMKdðr � r0ÞdV 0 ð18Þ

After some manipulations and consideration of boundary conditions, the expression of UKðrÞ, developed in

Appendix A, can be expressed as

UKðrÞ ¼ U 0
KðrÞ þ

Z
V
GJKðr � r0ÞðdEiJMnðr0ÞUM ;nðr0ÞÞ;i0 dV 0 ð19Þ

in which U 0
K is the displacement–electric potential of an homogeneous medium, with an equivalent ge-

ometry and boundaries conditions as considered medium.

Considering the fact that ZKl is derivable from UK (see Eqs. (3), (4), (7) and (8)), ZKl can be expressed by

ZKl ¼ UK;L ð20Þ
Then ZKlðrÞ can be obtained as

ZKlðrÞ ¼ Z0
Kl þ

Z
V
GJK;lðr � r0ÞðdEiJMnðr0ÞZMnðr0ÞÞ;i0 dV 0 ð21Þ

After integrating by parts the above equation and considering that the strain-electric field vanishes at the
boundaries, ZKlðrÞ can be expressed as

ZKlðrÞ ¼ Z0
Kl �

Z
V
GJK;li0 ðr � r0ÞdEiJMnðr0ÞZMnðr0ÞdV 0 ð22Þ

Let us recall that the partial differentiation ð@i ¼ �@i0 Þ and introduce fours tensors represented by the

following shorthand expression:

CiJKlðr � r0Þ ¼ �GJK;liðr � r0Þ ð23Þ
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The explicit expression of CiJKlðr � r0Þ is

� 1

2
ðGjk;liðr � r0Þ þ Gjl;kiðr � r0ÞÞ for J and K ¼ 1; 2; 3

� 1

2
ðG4k;liðr � r0Þ þ G4l;kiðr � r0ÞÞ for J ¼ 4 and K ¼ 1; 2; 3

�GJ4;liðr � r0Þ for J ¼ 1; 2; 3 and K ¼ 4

�G44;liðr � r0Þ for J ¼ 4 and K ¼ 4

Finally, the strain-electric field is given by the following integral equation:

ZKlðrÞ ¼ Z0
Kl �

Z
V

CiJKlðr � r0ÞdEiJMnðr0ÞZMnðr0ÞdV 0 ð24Þ

This equation is an implicit expression of strain-electric fields ZKlðrÞ. To obtain the solution of this equa-

tion, a methodology based on equivalent inclusion problem is developed and used in this paper. This leads

to equations of localization relating ZKl (local field) and Z0
Kl (macroscopic field) by means of concentration

factors. Then the solution of the integral equation (24) is the key of the localization problem for micro-

heterogeneous media.

4. Solutions of the integral equation

4.1. Equivalent inclusion problem

Considering an infinite medium with electroelastic moduli E0
iJMn which contains a single inclusion ‘‘I ’’

with a volume V I and electroelastic moduli EI
iJMn constant inside the volume V I , the inhomogeneity can be

simulated by an ‘‘equivalent inclusion’’. Based on these assumptions, as shown by Eshelby (1957) in the
elastic case and by Deeg (1980) in electroelastic case, one can get

dEiJMnðrÞ ¼ ðEI
iJMn � E0

iJMnÞh
IðrÞ

or

dEiJMnðrÞ ¼ DEI
iJMnh

IðrÞ ð25Þ

where hIðrÞ is the characteristic function of V I ðhIðrÞ equals to �1� inside of V I and to �0� outside of V IÞ.
Based on Eq. (24), the average of the strain-electric field ZI

Kl in the considered inclusion is calculated by

ZI
Kl ¼ Z0

Kl �
1

V I

Z
V I

Z
V

CiJKlðr � r0ÞDEI
iJMnh

Iðr0ÞZMnðr0ÞdV 0 dV ð26Þ

Exact solutions of this equation are difficult to obtain. An approximate solution based on the effective field

method can be obtained replacing ZMnðr0Þ by the average value ZI
Kl in the inclusion as follows:

ZI
Kl ¼ Z0

Kl �
1

V I

Z
V I

Z
V I

CiJKlðr � r0ÞDEI
iJMnZ

I
Mn dV

0 dV ð27Þ

This equation can be formulated in the following form:

ZI
Kl ¼ Z0

Kl �
1

V I
T II

iJKlDEI
iJMnZ

I
Mn ð28Þ

T II
iJKl ¼

Z
V I

Z
V I

CiJKlðr � r0ÞdV 0 dV ð29Þ
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T II
iJKl represent four interaction tensors and explicit expressions of these tensors are elaborated in Appendix

B. T II
iJKl are related to electroelastic Eshelby�s tensors, ‘‘SiJKl’’, used by Dunn and Taya (1993a), by the

following relationship:

SJiMn ¼ E0
lKMnT

II
iJKl ð30Þ

In the elastic case, the last tensors are reduced to the well known Eshelby�s tensor Sjimn (Eshelby, 1957).

In many published papers on piezoelectric composites, the tensors SIjKl are used. These tensors and

Green�s functions are analytically computed for simple shapes of inclusions by some authors. Mikata (2001)

recently presents an explicit determination of piezoelectric Eshelby�s tensors for spherical inclusions. In the

present work, a general ellipsoidal inclusion in transversely isotropic piezoelectric solid is considered. An

analytical formulation of the interaction tensors, T II
iJKl, is clearly presented. Numerical solutions are based

on numerical computation of tensors T II
iJKl for various types of inclusions.

4.2. The self-consistent approximation

In order to give a solution of integral equation (27) based on equivalent inclusion problem, the self-

consistent method will be used here. This will permit to take into account the interactions existing between

inclusion and matrix for predictions of effective electroelastic moduli of non-piezoelectric materials rein-
forced by piezoelectric fibers or particles. The self-consistent model initially investigated by Hershey (1954)

and Kr€ooner (1958) for polycrystalline aggregate with a linear behavior consists in considering one single

heterogeneity (inclusion) embedded in an homogeneous medium (matrix) with effective electroelastic mo-

duli Eeff
iJMn not yet known and taking into account the equivalent behavior of neighboring medium of in-

clusion. In contrast with the last case, the heterogeneity was embedded in homogeneous medium with

electroelastic moduli E0
iJMn. Under these conditions the expression of the field ZI becomes

ZI
Kl ¼ ZKl �

1

V I
T II

iJKlDEI
iJMnZ

I
Mn ð31Þ

DEI
iJMn ¼ EI

iJMn � Eeff
iJMn ð32Þ

where ZKl is the macroscopic homogeneous strain-electric field obtained by the average of ZKlðrÞ over the
total volume of medium and compatible with boundary conditions

ZKl ¼
1

V

Z
V
ZKlðrÞdV ð33Þ

in which V is the total volume of medium ðinclusionþmatrixÞ.
The final expression of the local field ZI as a function of global or macroscopic fields ZKl is then

ZI
Mn ¼ IKlMn

	
þ 1

V I
T II

iJKlDEI
iJMn


�1

ZKl ð34Þ

or

ZI
Mn ¼ ASc

MnKlZKl ð35Þ

ASc
MnKl is the shorthand notation of four concentration tensors. Explicit expressions of these tensors are

presented in Appendix C.

For an N -phase medium the average definition of the stress and electric displacement �RRiJ can be ex-
pressed, since Hill-Mandel average formulation, in the following form:
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�RRiJ ¼
XN
I¼1

f IEI
iJMnZ

I
Mn ð36Þ

where f I ¼ V I

V is the concentration of the inclusion I .
Substituting (35) into (36) one can obtain

�RRiJ ¼
XN
I¼1

f IEI
iJMnA

Sc
MnKlZKl ð37Þ

Namely, ZMn is a constant strain-electric field, then it can be taken out of the summation symbol. Finally,

the effective electroelastic moduli, Eeff , obtained by the self-consistent model can be expressed by

Eeff
iJKl ¼

XN
I¼1

f IEI
iJMnA

Sc
MnKl ð38Þ

If the first phase ðN ¼ 1Þ is considered as matrix (symbol ‘‘m’’), the last expression becomes

Eeff
iJKl ¼ Em

iJKl þ
XN
I¼2

f IðEI
iJMn � Em

iJMnÞASc
MnKl ð39Þ

Let us recall that
PN

I¼1 f
IASc

MnKl ¼ IMnKl, where IMnKl is the shorthand notation for the fourth order and

second order identity tensors (Dunn and Taya (1993a))

IMnKl ¼

Imnkl K;M ¼ 1; 2; 3
0 K ¼ 1; 2; 3; M ¼ 4

0 K ¼ 4; M ¼ 1; 2; 3
Inl K ¼ 4; M ¼ 4

8>><>>: ð40Þ

Em
iJKl correspond to matrix electroelastic moduli and EI

iJMn correspond to inclusion electroelastic moduli.

These formulations permit one to predict the effective electroelastic moduli for N -phase composites. For a

two-phase composites the expression of Eeff
iJKl becomes

Eeff
iJKl ¼ Em

iJKl þ f IðEI
iJMn � Em

iJMnÞASc
MnKl ð41Þ

Let us recall that equations (39) and (41) give coupled and implicit expressions of the effective electroelastic

moduli of piezoelectric material. The concentration factors ASc are functions of Eeff . This kind of equations

is generally solved by iterative methods, which need a starting solution. The initial values of Eeff may be

those of Voigt generalized approximations as in the present work

EV
iJKl ¼

X
I

f IEI
iJMnIMnKl ð42Þ

Additionally, the concentration factors ASc, in the expression of Eeff , depend on T II which need to be

firstly computed. The tensors T II are obtained by Fourier�s transforms of the Green�s functions and nu-

merical evaluation of integrals are investigated. After computing the tensors T II with the electroelastic

starting solution obtained by Voigt approximation (42), it is introduced in the formulation of concentration

factors ASc in order to get the first value of effective electroelastic moduli Eeff
1 . This operation is repeated

until convergence of the method. The algorithm describing this methodological approach is presented in

Appendix D.
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4.3. Generalized Mori–Tanaka approach

In this approach, the interaction between matrix and inclusion is taken into account by considering a

finite concentration of inclusions embedded in an infinite matrix with electroelastic moduli EI
iJKl and Em

iJKl

respectively and subjected to electroelastic uniform field Z0 at boundaries. The interaction matrix-inclusion

is restricted in the effect of concentration of inclusion. In this approach, the expression of strain-electric

fields ZI
Kl is similar to that derived by the self-consistent approach but more simplified considering the fact

that in this case the term Eeff
iJMn in Eq. (34) (see (32) again) is replaced by Em

iJMn in the term DEI
iJMn. Then, the

expression becomes explicit and the computation is straightforward. Additionally, the term 1
V I is replaced by

fm

V I , where fm is concentration of matrix. The expression of strain-electric field for Mori–Tanaka�s ap-

proximation is then

ZI
Mn ¼ IKlMn

	
þ fm

V I
T II

iJKlDEI
iJMn


�1

Z0
Kl ð43Þ

in which Z0 are also here macroscopic strain-electric fields of equivalent homogeneous medium. The

concentration tensors AMT , corresponding to Mori–Tanaka�s model, are then expressed as

AMT
MnKl ¼ IKlMn

	
þ fm

V I
T II

iJKlDEI
iJMn


�1

ð44Þ

Similarly to the self-consistent approach, the effective behavior for two-phase composites can be ob-

tained by

Eeff
iJKl ¼ Em

iJKl þ f IðEI
iJMn � Em

iJMnÞAMT
MnKl ð45Þ

4.4. Dilute approach

This approach has equivalent scheme than the above approaches but does not consider any interaction

between the infinite matrix and the embedded single inclusion. Then the expression of strain-electric fields

ZI
Kl of inclusion can be derived from that obtained in self-consistent approach with the difference that in this

case, the infinite matrix has electroelastic moduli Em as equivalent behavior. Than, the expression of strain-

electric field in inclusion is obtained as follows:

ZI
Mn ¼ IKlMn

	
þ 1

V I
T II

iJKlDEI
iJMn


�1

Z0
Kl ð46Þ

namely, DEI
iJMn ¼ EI

iJMn � Em
iJMn.

Z0
Mn also here is the macroscopic strain-electric field of an equivalent homogeneous medium. The con-

centration factors ADil, corresponding to dilute approach, have the following expression:

ADil
MnKl ¼ IKlMn

	
þ 1

V I
T II

iJKlDEI
iJMn


�1

ð47Þ

Finally the effective behavior in this case is expressed as

Eeff
iJKl ¼ Em

iJKl þ f IðEI
iJMn � Em

iJMnÞADil
MnKl ð48Þ

5. Numerical results

In this section, ‘‘Ceramic-Polymer’’ composites are considered. The first phase, matrix, is constituted

of spherical inclusions of isotropic polymer. The second phase, reinforcement, is a transversely isotropic
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ellipsoidal inclusions of ceramic with half axes a, b and c. The global coordinate system related to matrix is

ðx1; x2; x3Þ and the third half axe ‘‘c’’ of inclusion is respected with the polling direction x3 (see Fig. 1a).
Namely a spatial orientation of inclusion in generally anisotropic medium can be described by three Euler

angles h, / and x (Fig. 1b). Let u1, u2 and u3 be unit vectors in the ðx1; x2; x3Þ, global coordinate system and
�uu1, �uu2, �uu3 be the unit vector in (�xx1, �xx2, �xx3) coordinate system related to inclusion. The relationship between

these two unit vectors can be expressed as

�uu1
�uu2
�uu3

8<:
9=; ¼ ½W


u1
u2
u3

8<:
9=; ð49Þ

½W
 ¼
mr � spn rn þ spm sn
�rpn � sm rpm � sn rq

qn �qm p

24 35
where ½W
 is the direction cosine matrix, m ¼ cos h, n ¼ sin h, p ¼ cos/, q ¼ sin/, r ¼ cosx and s ¼ sinx.

In the first part of the present work, the principal axes of the ellipsoid coincide with the global coordinate
system. In this particular case, the Euler angles vanish ðh ¼ / ¼ x ¼ 0Þ. Let us precise that the models

Fig. 1. (a) Scheme of spatial distribution of inclusions which third half axe ‘‘c’’ is aligned with polling and global direction x3: (b)
Definition of Euler angles h, / and x.
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presented in the last paragraphs, used for predictions of electroelastic coefficients, can be easily used for all

inclusion spatial orientations and multi-phase composites. The micro-mechanical approaches presented

above are applied for different composites to predict effective electroelastic moduli Eeff
iJMn. Additionally from

the symmetry of Cijmn, enij and jin, it can be seen that the ð9� 9Þmatrix EI
iJKl possesses a diagonal symmetry.

In a similar manner, Eeff
iJMn can also be shown to possess a diagonal symmetry and has shape of transversely

isotropic materials electroelastic ð9� 9Þ matrix. The electroelastic moduli of the constituents used in our

investigation are given in Table 1. These values are obtained from the following papers Berlincourt (1971);

Chan and Unsworth (1989) and Huang (1995). The well-known Voigt two index notation is adopted.

The aim of this study is primarily to clarify the effect of inclusion shapes and orientations and to identify

the predictions of the three presented models for various effective parameters. It is well know that, for fibers

inclusions, the predictions of piezoelectric strain coefficient d33 based on the three micro-mechanical models,

dilute, Mori–Tanaka and self-consistent, are indistinguishable for the composites PZT-7A*/epoxy-1, as
presented by Dunn and Taya (1993b). Based on the three models presented above, Fig. 2 illustrates nu-

merical results obtained for PZT-7A*/epoxy-1 composite. The obtained results are the same than those

presented by Dunn and Taya and by various authors (Poizat and Sester, 1999; Jiang et al., 1999; Kreher,

Table 1

Electroelastic material properties

C11

(GPa)

C12

(GPa)

C13

(GPa)

C33

(GPa)

C44

(GPa)

e31
(C/m2)

e33
(C/m2)

e15
(C/m2)

j11=j0
a j33=j0

a

PZT-7A 148 76.2 74.2 131 25.4 �2:1 9.5 9.2 460 235

PZT-7A* 148 76.2 74.2 131 25.4 �2:1 12.3 9.2 460 235

PZT-5 121 75.4 75.2 111 21.1 �5:4 15.8 12.3 916 830

PZT-4 139 77.8 74.3 115 25.6 �5:2 15.1 12.7 730 635

BaTiO3 166 77 78 162 43 �4:4 18.6 11.6 1665.5 1423.7

Epoxy-1 8.0 4.4 4.4 8.0 1.8 0 0 0 4.2 4.2

Epoxy-2 6.43 4.29 4.29 6.43 1.07 0 0 0 5 5

a j0 ¼ 8:85� 10�12 (C2/Nm2)¼ permittivity of free space.
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Fig. 2. Effective piezoelectric module d33 predicted by self consistent model, Mori–Tanaka and dilute approaches for several ceramic

continuous fibers ðc=a ¼ 1000Þ reinforced epoxy composites as a function of fibers concentration. ‘‘d’’ indicate experimental results

(Chan and Unsworth, 1989) for PZT-7A*/epoxy composite compared to computed results.
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1998) and are in good agreement with the experimental results of Chan and Unsworth (1989). Our aim here

is to analyze if these three models give similar predictions for other fiber inclusions. It is clearly shown in

Fig. 2 that for PZT-5/epoxy-1, PZT-4/epoxy-1 and BaTiO3/epoxy-1, the three models lead to the same

predictions for each composite for this kind of inclusions (fibers c=a ¼ 1000). It can be remarked that the
evolution of d33 with concentration of all ceramic fibers presents a strong variation at the small concen-

tration near to 0.2 and a very low variation over. In Fig. 3, numerical results for the piezoelectric strain

coefficient d33 are plotted against the concentration of PZT-7A* reinforcement and compared with nu-

merical results of Kreher (1998) using the effective field approach (EFA). The used composite is epoxy-1

reinforced by long and short fibers and spherical particles. The three micro-mechanical models, dilute,

Mori–Tanaka and self-consistent are used for computation. It can be seen that for long fibers, as in Fig. 2,

the three micro-mechanical models predictions are indistinguishable and agree with numerical results

presented by Kreher (1998). In contrast with the case of short fibers and particles (aspect ratio c=a ¼ 10 and
1), The three models give different results. Self-consistent model gives high values of d33 than Mori–Tanaka

and dilute models for ðc=a ¼ 10Þ and ðc=a ¼ 1Þ. It is clearly shown that the dilute model doesn�t predict
acceptable result at high concentration limit ðf I ¼ 1Þ and appears to be an asymptotic limit of Mori–Ta-

naka�s approximation for small concentrations. The results taken from a curve of Kreher (1998) obtained

by EFA are reported in Fig. 3 and are similar to those obtained by the presented Mori–Tanaka�s approach.
This similarity is expected because Mori–Tanaka�s model seems to be a particular case of the EFA. An

interesting conclusion from this figure is that d33 computed by self-consistent method becomes nearly in-

sensitive towards reinforcement shape in contrast with dilute, Mori–Tanaka models and Effective Field
Approximation (Kreher, 1998) for which d33 is strongly affected by reinforcement shape. Fig. 4 show the

variation of numerically predicted piezoelectric coefficients e33 and e31 for PZT-7A/epoxy-1 composite

varied with concentration of PZT-7A for different aspect ratios of inclusions. It can be seen also from Fig.

4a that the predictions of e33 by the three models, self-consistent, Mori–Tanaka and dilute, are the same for

long fibers inclusions. But for spherical inclusions (Fig. 4b), the predictions of self-consistent scheme are
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Fig. 3. Comparison of micro-mechanical predictions of effective piezoelectric moduli d33 of PZT-7A* continuous fibers ðc=a ¼ 1000Þ,
ellipsoids ðc=a ¼ 10Þ, and particles ðc=a ¼ 1Þ reinforced epoxy composite as a function of reinforcement volume fractions. SC: self-

consistent; MT: Mori–Tanaka; DIL: dilute. ‘‘d’’ and ‘‘r’’: EFA results from a curve of Kreher (1998).
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Fig. 4. (a) Effective piezoelectric moduli e33 of PZT-7A long fibers ðc=a ¼ 1000Þ reinforced epoxy-1 composite as a function of fiber

volume fraction. (b) Effective piezoelectric moduli e33 of PZT-7A spherical particles ðc=a ¼ 1Þ reinforced epoxy-1 composite as a

function of fiber volume fraction. (c) Effective piezoelectric moduli e33 of PZT-7A elliptical fibers ðc=a ¼ 10Þ reinforced epoxy-1

composite as a function of fiber volume fraction. Comparison with numerical results obtained from Fig. 5 of (Poizat and Sester, 1999).

‘‘*’’: FE-unit cell method (simple cubic); ‘‘�’’: EFA; ‘‘+’’: FE-unit cell method (body centered cubic). (d) Effective piezoelectric moduli

e31 of PZT-7A spherical particles and ellipsoidal fibers (c=a ¼ 1 and 10) reinforced epoxy-1 composite as a function of fibers (particles)

volume fraction. (e) Effective piezoelectric moduli e31 of PZT-7A long fibers ðc=a ¼ 1000Þ reinforced epoxy-1 composite as a function

of fiber volume fraction.
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overestimated than those of the other two models. Fig. 4c illustrates the numerical results computed by the

three models mentioned above and compared with those obtained by (Poizat and Sester, 1999) using finite

element method and EFA for concentrations of piezoelectric inclusions low than 0.5. It can be seen again

that results obtained by the presented Mori–Tanaka�s approach agree well with the EFA predictions. The
self-consistent scheme, which is usually criticized for large volume fractions and particularly for spherical

inclusions, leads to good qualitative results in comparison with the FE unit cell method based on body

centered cubic. But, the FE unit cell method using simple cubic lattice leads to erroneous results in com-

parison with the other models as can be shown in the Fig. 4c.

In contrast with e33, the piezoelectric coefficient e31 predicted by the three models seems to be insensitive

to shape of inclusions and the models lead to distinguished results for all shapes of inclusions (see Fig. 4d

and e). We clearly demonstrate by these curves that even if the inclusions are long fibers ðc=a ¼ 1000Þ, for
which the prediction of the three models coincide perfectly for d33, there are discrepancies for other pre-
dicted coefficients. For fiber inclusions, this discrepancy is more pronounced for e31 that for e33. The dilute
model is an asymptotic limit of Mori–Tanaka model and doesn�t have the compatibility with high limit

concentration of inclusions ðf I ¼ 1Þ. It stays then unacceptable at the highest concentration of inclusions.

Fig. 5a shows the predicted numerical values of the piezoelectric strain constant d31 for long fibers

ðc=a ¼ 1000Þ. The composite used is PZT-5/epoxy-1. The predictions of the three models are nearly the

Fig. 5. (a) Effective piezoelectric module d31 predicted by the three micro-mechanical models of PZT-5 log fibers ðc=a ¼ 1000Þ rein-
forced epoxy composite as a function of fiber volume fraction. (b) Effective piezoelectric module d31 predicted by the three micro-

mechanical models of PZT-5 for ellipsoidal ðc=a ¼ 10Þ reinforced epoxy composite as a function of fibers volume fraction. (c) Effective

piezoelectric moduli d31 predicted by the three micro-mechanical models of PZT-5 for particles ðc=a ¼ 1Þ reinforced epoxy composite

as a function of particles volume fraction. ‘‘d’’ Experimental results (Furukawa et al., 1976).
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same but a big difference is shown for other shapes of inclusions. For ellipsoid (Fig. 5b) and particles (Fig.

5c), the self-consistent model overestimates the constant d31 over the volume fraction of inclusion equal to

0.2. The two other models give lowest values of d31 and agree well, for volume fraction low than 0.3, with

limited experimental results of Furukawa et al. (1976) taken from a curve presented by Dunn and Taya
(1993b). In light of these results, one can conclude that the self-consistent scheme leads to acceptable

prediction of d31 only for concentrations less than 0.2 while the Mori–Tanaka�s approach is in the best

agreement with experimental results over that. As there is no available experimental results for large volume

fractions of reinforcement, it can not be ascertained which prediction will be better at higher concentration.

Fig. 6 show the predicted evolution of effective piezoelectric coefficients e33 and eh, defined by

eh ¼ e33 þ 2e31, normalized by e33 and eh of reinforcement, with aspect ratio of inclusions. The reinforce-

ment is made of PZT-4 and the matrix of epoxy-2 (see Table 1). The inclusions volume fraction is fixed at

20% (Fig. 6a) and at 50% (Fig. 6b) respectively. It is clearly seen, as it was observed by Dunn and Taya
(1993a) and Poizat and Sester (1999), that for the three numerical predictions, the geometry of rein-

forcement began affecting significantly the piezoelectric moduli of composite over the aspect ratio range of

5–50. At aspect ratio of approximately 100, the composite became saturated, and normalized piezoelectric

constants do not increase or show an insignificant increasing. Additionally, for the reinforcement volume

fraction of 50%, self-consistent model predicts overestimated results for spherical inclusions and gives the

nearly same results as Mori–Tanaka and dilute approaches for the long fibers reinforcement.

In Fig. 7, normalized piezoelectric coefficient e33 and eh for a fixed aspect ratio ðc=a ¼ 1000Þ are plotted
versus the long fiber volume fraction of PZT-4. The matrix is an epoxy-2 matrix (see Table 1). Numerical
results obtained by the three models are shown in Fig. 7. Results obtained by self-consistent and Mori–

Tanaka models seem to be acceptable as they take the values 0 and 1 at low ðf I ¼ 0Þ and high ðf I ¼ 1Þ limit

volume fractions. The results of the two models are nearly the same for normalized e33 for all volume

fractions. Also for normalized eh, for volume fraction low than 50%, the three models give the same results.

The dilute approximation, even in this case, appears as asymptotic limit of the other approximations and

take unacceptable values at high limit volume fraction ðf ¼ 1Þ.
Using the possibility of the presented micro-mechanical methodology to treat all fiber orientations

randomly distributed in epoxy matrix, Figs. 8 and 9, illustrate the evolution of effective piezoelectric co-
efficients d33 and d31 of PZT-7A/epoxy-1 composite with respect to volume fractions of fiber reinforcements

Fig. 6. (a) Piezoelectric coefficients e33 and eh ¼ e33 þ 2e31, normalized by e33 and eh of PZT-4, as a function of particle aspect ratio for

PZT-4 particle reinforced epoxy composite, computed by the three micro-mechanical models and at a fixed volume fraction of re-

inforcement f ¼ 0:2. (b) Piezoelectric coefficients e33 and eh ¼ e33 þ 2e31, normalized by e33 and eh of PZT-4, as a function of particle

aspect ratio for PZT-4 particle reinforced epoxy composite, computed by the three micro-mechanical models and at a fixed volume

fraction of reinforcement f ¼ 0:5.
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Fig. 7. Piezoelectric coefficients e33 and eh ¼ e33 þ 2e31, normalized by e33 and eh of PZT-4, as a function of PZT-4 volume fraction for

PZT-4 continuous fiber reinforced epoxy composite.

Fig. 8. Effective piezoelectric coefficient d33 of PZT-7A/epoxy composite predicted by Mori–Tanaka (MT) and self-consistent (SC)

approaches for three orientations of fiber reinforcements (/ ¼ 0�, 30�, 60�).

Fig. 9. Effective piezoelectric coefficient d31 of PZT-7A/epoxy for three orientations of fiber reinforcements (/ ¼ 0�, 30�, 60�).
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for different orientations / (Euler angle). Let us precise that in this analysis, the third axe of inclusion is

kept respected with polling direction. For the orientation ð/ ¼ 0�Þ and fiber inclusion, it was demonstrated,

(Fig. 1), that all models lead to the same prediction for d33. For ð/ ¼ 30�Þ, it can be shown from Fig. 8 that

the self-consistent and Mori–Tanaka models give approximately the same result up to inclusion volume
fraction ðf ¼ 0:5Þ. But, the two predictions are completely different for more large inclusion volume

fractions. The difference is more strong for ð/ ¼ 60�Þ. For d31 presented in Fig. 9, the two models lead

to the same results for ð/ ¼ 0�Þ and separate with each other for large inclusion volume fractions. This

difference is more pronounced for ð/ ¼ 30�Þ. The coefficient d33 is highly sensitive to the orientation angles

than d31.
As the orientation angle of inclusions seems strongly affecting the predicted effective coefficients, a

deep analysis of this influence will be presented in the next paper for various shapes and types on PZT

inclusions.

6. Conclusion

In this paper, an electroelastic modeling for piezoelectric inclusions in an infinite non-piezoelectric

matrix is presented. Analytical formulations of four electroelastic interaction tensors, related to Eshelby

electroelastic tensors obtained by Dunn and Taya (1993a), are given for ellipsoidal inclusions. These tensors

are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. These tensors
were obtained numerically based on Fourier�s transforms and Gauss�s integration. Using the obtained

results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative

procedure in the context of self-consistent scheme. Generalized Mori–Tanaka�s model and dilute approach

are re-formulated and used in the analysis.

Namely, the presented micro-mechanics models are able to treat multiphase composites with rein-

forcement ranging from spherical particles to continuous long fibers randomly distributed at a fixed spatial

orientations. Several examples of ceramic/epoxy composites have been investigated. Hence, it can be seen

that self-consistent and Mori–Tanaka�s methods lead to acceptable results with the fact that results ob-
tained by the self-consistent method are over estimated than those of Mori–Tanaka�s method. In contrast,

the dilute approach leads to unacceptable results for large volume fractions and seems to be asymptotic

limit of the above models. Numerical results show a strong dependence of effective electroelastic modulus

on the volume fraction, aspect ratio and spatial orientation of reinforcement.
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Appendix A

Since the expression (18) of the elastic displacement–electric potential UK and the Eq. (17a) in this paper

and using the fact that GJK;iðr � r0Þ ¼ �GJK;i0 ðr � r0Þ, the elastic displacement and electric potential, UK , can
be expressed as follows:

UKðrÞ ¼ �
Z

V
E0

iJMnGJK;i0n0 ðr � r0ÞUMðr0ÞdV 0 ðA:1Þ
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The partial derivative relations used are as follows:

GJK;i0n0UM ¼ ðGJK;i0UMÞ;n0 �GJK;i0UM ;n0

GJK;i0n0UM ¼ ðGJK;i0UMÞ;n0 �ðGJKUM ;n0 Þ;i0 þ GJKUM ;n0i0
ðA:2Þ

Introducing (A.2) into (A.1) and using Stocks theorem, the expression of UM becomes

UKðrÞ ¼ �
Z

S
E0

iJMnGJK;i0UMnn0 dS0 þ
Z

S
E0

iJMnGJKUM ;n0ni0 dS0 �
Z

V
E0

iJMnGJKUM ;n0i0 dV 0

The first term of right hand side of the last equation is the elastic displacement-potential electric field in a

homogeneous solid with equivalent geometry and boundary conditions as considered solid. This field will

be denoted U 0
KðrÞ

In the other hand, the second integral can be expressed asZ
S
E0

iJMnGJKUM ;n0ni0 dS0 ¼
Z

S
GJKRiJ ni0 dS0 ¼

Z
S
GJKTJ ðr0ÞdS0

RiJ is stress–electric displacement, n is the exterior normal of S and TJ is body force-electric charge. This

integral vanishes because the boundaries conditions of the considered solid are only imposed elastic dis-

placement–electric potential. (The solid is free of stress–electric displacement field.)

Finally UKðrÞ can be expressed as

UKðrÞ ¼ U 0
KðrÞ �

Z
V
E0

iJMnGJKðr � r0ÞUM ;n0i0 ðr0ÞdV 0 ðA:3Þ

The substitution of the equation (16) of the paper into (A.3) leads to

UKðrÞ ¼ U 0
KðrÞ þ

Z
V
GJKðr � r0ÞðdEiJMnðr0ÞUM ;nðr0ÞÞ;i0 dV 0

Or, using strain-electric field ZMn

UKðrÞ ¼ U 0
KðrÞ þ

Z
V
GJKðr � r0ÞðdEiJMnðr0ÞZMnðr0ÞÞ;i0 dV 0 ðA:4Þ

Appendix B

B.1. The four interaction tensors T II

B.1.1. Shorthand forms

T II
iJKl ¼ � 1

2

Z
V I

Z
V I
ðGJK;liðr � r0Þ þ GJl;Kiðr � r0ÞÞdV 0 dV K ¼ 1; 2; 3 ðB:1Þ

T II
iJKl ¼ �

Z
V I

Z
V I

GJK;liðr � r0ÞdV 0 dV K ¼ 4 ðB:2Þ
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B.1.2. Explicit forms

T II
ijkl ¼

Z
V I

Z
V I
� 1

2
ðGjk;liðr � r0Þ þ Gjl;kiðr � r0ÞÞdV 0 dV J ;K ¼ 1; 2; 3 ðB:3Þ

T II
ikl ¼

Z
V I

Z
V I
� 1

2
ðG4k;liðr � r0Þ þ G4l;kiðr � r0ÞÞdV 0 dV J ¼ 4; K ¼ 1; 2; 3 ðB:4Þ

T II
ijl ¼

Z
V I

Z
V I
�Gj4;liðr � r0ÞdV 0 dV J ¼ 1; 2; 3; K ¼ 4 ðB:5Þ

T II
il ¼

Z
V I

Z
V I
�G44;liðr � r0ÞdV 0 dV J ¼ 4; K ¼ 4 ðB:6Þ

The Green�s four tensors signification is given in paper of Dunn (1994).
The computation of T II is realized by Fourier�s transforms of Green�s functions.
Differential equation (17a), introduced in Section 3 of this paper, which are satisfied by Green�s functions

GMKðr � r0Þ can be written in the following condensed form:

EiJMnGJK;inðr � r0Þ þ dMKdðr � r0Þ ¼ 0

This leads to (Wang, 1992) and (Dunn, 1994)

EiJMn
eGGJKðqÞqnqi ¼ dMK ðB:7Þ

B.2. Expression of T II using the Fourier�s transform of Green�s functions

B.2.1. Spherical inclusion

In this case spherical inclusions with radius ‘‘q’’ equal at ‘‘a’’ is considered. In spherical system attached

at the inclusion, the vector ~qq became

qp ¼ qvp p ¼ 1; 2; 3 ðB:8Þ

~vv ¼
sin h cosu
sin h sinu
cos h

8<:
q, h and u are the spherical coordinates of the vector ~qq defined in the following domains: q 2 ½0;þ1
,
h 2 ½0; p
 and u 2 ½0; 2p
 the introduction of the equations (B.8) into (B.7) leads to

EiJMnvnviðq2 eGGJKðqÞÞ ¼ dMK ðB:9Þ

Let us introduce a matrix M defined by

MJM ¼ EiJMnvnvi ðB:10Þ

The inverse matrix of M is then

M�1
JK ¼ q2 eGGJKðqÞ ðB:11Þ
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The expression of T II
iJKl in spherical coordinate system is given by

T II
iJKl ¼

a3

6

Z p

0

sin hdh
Z 2p

0

ðvivlq
2 eGGJK þ vivKq

2 eGGJlÞdu K ¼ 1; 2; 3 ðB:12Þ

T II
iJKl ¼

a3

3

Z p

0

sin hdh
Z 2p

0

vivlq
2 eGGJ4 du K ¼ 4 ðB:13Þ

B.2.2. Ellipsoidal inclusion

An ellipsoidal inclusion with a, b and c as half axes is considered. The last combined vectors~rr and~qq are

replaced into ~RR and ~QQ defined by

~RR
R1 ¼ r1
R2 ¼ a

b r2
R3 ¼ a

c r3

8<: and ~QQ
Q1 ¼ q1
Q2 ¼ b

a q2
Q3 ¼ c

a q3

8<:
these vectors are expressed in principal system of inclusion.

The matrix relationship between ~QQ and ~qq is as follows:

qi ¼ /itQt ðB:14Þ
with

½/
 ¼
1 0 0

0 a
b 0

0 0 a
c

24 35
The expression of ~QQ in this coordinate system is then

Qt ¼ Qvt ðB:15Þ

Recall that

~vv ¼
sin h cosu
sin h sinu
cos h

8<:
The final expression of T II

iJKl is then as the follows:

T II
iJKl ¼

a � b � c
6

Z p

0

sin hdh
Z 2p

0

ð/ltvt/iuvuQ
2 eGGJK þ /Ktvt/iuvuQ

2 eGGJlÞdu K ¼ 1; 2; 3 ðB:16Þ

T II
iJKl ¼

a � b � c
3

Z p

0

sin hdh
Z 2p

0

/ltvt/iuvuQ
2 eGGJ4 du K ¼ 4 ðB:17Þ

As in the case of spherical inclusion it can be introduce the matrix M defined by

Q2 eGGJK ¼ M�1
JK ðB:18Þ

and

MJK ¼ EiJKl/it/luvtvu ðB:19Þ
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Appendix C

Eqs. (34) and (35) of Section 4.2 lead to the following shorthand expression of concentration tensor A
established for self-consistent method

AMnKl ¼ IKlMn

	
þ 1

V I
T II

iJKlDEI
iJMn


�1

ðC:1Þ

The inverse of A is then

A�1
KlMn ¼ IKlMn þ

1

V I
T II

iJKlDEI
iJMn ðC:2Þ

The Eq. (C.2) can be expressed using matrix notations as follows:

A�1
KlMn ¼

Iklmn 0

0 Iln

� �
þ 1

V I

Tijkl Tikl

Tijl Til

� �
DCijmn Det

nij

Deimn �Djin

� �
ðC:3Þ

Tijkl, Tikl, Tijl, Til are the interaction tensors as shown in Appendix B. Iklmn and Iln are the identity tensors of

fourth and second orders respectively.

The term T II
iJKlDEI

iJMn is expressed with the following matrices:

T II
iJKlDEI

iJMn ¼
T e
4 �T E

3

T e
3 �T E

2

� �
¼ Tijkl Tikl

Tijl Til

� �
DCijmn Det

nij

Deimn �Djin

� �
ðC:4Þ

A simplified prescription of the matrices AMnKl and IKlMn are as

IKlMn ¼
I4 0

0 I2

� �
and AMnKl ¼

Ae
4 AE

3

Ae
3 AE

2

� �
ðC:5Þ

For the sake of clarity, the indices 4, 3 and 2 indicate the ranges of tensors and the prescription E and e are
introduced for distinguishing the different tensors. Considering the fact that A�1 � A ¼ I , (C.3)–(C.5) can be

lead to matrices prescriptions

I4 0

0 I2

� �
¼ I4 þ 1

V I T e
4 � 1

V I T E
3

1
V I T e

3 I2 � 1
V I T E

2

� �
� Ae

4 AE
3

Ae
3 AE

2

� �
ðC:6Þ

The Eqs. (C.6) lead to the following expressions of the fourth concentration tensors:

Ae
4 ¼ I4

"
þ 1

V I
T e
4

 
þ 1

V I
T E
3 I2

	
� 1

V I
T E
2


�1

T e
3

!#�1

ðC:7Þ

Ae
3 ¼ � 1

V I
I2

	
� 1

V I
T E
2


�1

T e
3A

e
4 ðC:8Þ

AE
3 ¼ 1

V I
I4

	
þ 1

V I
T e
4


�1

T E
3 AE

2 ðC:9Þ

AE
2 ¼ I2

"
� 1

V I
T E
2

 
� 1

V I
T e
3 I4

	
þ 1

V I
T e
4


�1

T E
3

!#�1

ðC:10Þ
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